Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;8(4):e1002595.
doi: 10.1371/journal.pgen.1002595. Epub 2012 Apr 5.

Defective Membrane Remodeling in Neuromuscular Diseases: Insights From Animal Models

Free PMC article

Defective Membrane Remodeling in Neuromuscular Diseases: Insights From Animal Models

Belinda S Cowling et al. PLoS Genet. .
Free PMC article


Proteins involved in membrane remodeling play an essential role in a plethora of cell functions including endocytosis and intracellular transport. Defects in several of them lead to human diseases. Myotubularins, amphiphysins, and dynamins are all proteins implicated in membrane trafficking and/or remodeling. Mutations in myotubularin, amphiphysin 2 (BIN1), and dynamin 2 lead to different forms of centronuclear myopathy, while mutations in myotubularin-related proteins cause Charcot-Marie-Tooth neuropathies. In addition to centronuclear myopathy, dynamin 2 is also mutated in a dominant form of Charcot-Marie-Tooth neuropathy. While several proteins from these different families are implicated in similar diseases, mutations in close homologues or in the same protein in the case of dynamin 2 lead to diseases affecting different tissues. This suggests (1) a common molecular pathway underlying these different neuromuscular diseases, and (2) tissue-specific regulation of these proteins. This review discusses the pathophysiology of the related neuromuscular diseases on the basis of animal models developed for proteins of the myotubularin, amphiphysin, and dynamin families. A better understanding of the common mechanisms between these neuromuscular disorders will lead to more specific health care and therapeutic approaches.

Conflict of interest statement

The authors have declared that no competing interests exist.


Figure 1
Figure 1. Protein domains and disease-causing mutations in the myotubularin, amphiphysin, and dynamin families.
Myotubularin contains a PH-GRAM domain that may bind lipids and a coil-coiled-PDZ binding site to form homo- and hetero-dimers with other members of the myotubularin family. Only the disease-causing missense mutations in MTM1 are represented, based on the international UMD-MTM1 database, existing currently in a local version in Strasbourg (France). MTM1 mutations identified in more than two patients are R69C(9 families), P205L(5), V227M(3), R241C(13), G378R(4), E404K(4), and Y397C(5). AMPH1 and BIN1 possess an N-BAR domain able to sense and eventually curve membrane and a C-terminal SH3 domain binding to proteins with proline-rich domains, such as dynamins , . In addition some isoforms have clathrin-binding and Myc-binding domains (CBD, MBD); a phosphoinositide-binding motif is present between the BAR and MBD domains specifically in skeletal muscle. DNM2 contains a GTPase domain, a central middle (MID) domain, a Pleckstrin Homology (PH) domain, a GTPase Effector Domain (GED), and a C-terminal Proline Rich Domain (PRD). Dominant mutations in DNM2 lead to either centronuclear myopathy (above), or peripheral CMT neuropathy (below). Only coding mutations are listed for all genes.
Figure 2
Figure 2. Phylogenetic relationships.
Phylogenetic relationships within the amphiphysin (A), dynamin (B), and myotubularin (C) protein families. Sequences were collected using the eggNOG database, which groups genes into families at different taxonomic levels. A high quality multiple sequence alignment was computed for each protein family on all proteins members including, respectively, 91 myotubularin protein sequences, 23 dynamin protein sequences, and 13 amphiphysin protein sequences. For a more detailed description, see Protocol S1. Scale represents the percentage of divergence.
Figure 3
Figure 3. Cellular functions of myotubularins, amphiphysins, and dynamins implicated in human diseases and their related pathological mechanisms.
(A) Human diseases, (B) their related pathological mechanisms. Membrane fission is necessary for vesicle formation and subsequent trafficking, while inhibition of membrane fission or membrane addition at the T-tubules in muscle may be necessary for their formation and maintenance.

Similar articles

See all similar articles

Cited by 24 articles

See all "Cited by" articles


    1. De Matteis MA, Luini A. Mendelian disorders of membrane trafficking. N Engl J Med. 2011;365:927–938. - PubMed
    1. van Wijngaarden GK, Fleury P, Bethlem J, Meijer AE. Familial “myotubular” myopathy. Neurology. 1969;19:901–908. - PubMed
    1. Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet. 1996;13:175–182. - PubMed
    1. Senderek J, Bergmann C, Weber S, Ketelsen UP, Schorle H, et al. Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum Mol Genet. 2003;12:349–356. - PubMed
    1. Azzedine H, Bolino A, Taieb T, Birouk N, Di Duca M, et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-ooth disease associated with early-onset glaucoma. Am J Hum Genet. 2003;72:1141–1153. - PMC - PubMed

Publication types

MeSH terms