Does cheating pay: the role of externally supplied momentum on muscular force in resistance exercise

Eur J Appl Physiol. 2013 Jan;113(1):135-45. doi: 10.1007/s00421-012-2420-y. Epub 2012 May 22.

Abstract

Our work investigates the use of "external momentum" in the context of hypertrophy-oriented training. This is momentum supplied to the load (such as a dumbbell) used in an exercise by means of action of muscles not inherently involved in the exercise. We challenge the general consensus that the use of such momentum often described as "cheating" is counterproductive. We focus on the use of external momentum in the shoulder lateral raise and adopt a framework whereby exercise execution is simulated on a computer. This is achieved using a physical model of motion which is combined with anthropomorphic measurements and empirical data of muscular recruitment from previous work. The introduction of moderate momentum (producing initial angular velocities around 57.5° s(-1)) increases the torque of the target muscles even without an increase in the load used. A moderate increase in the load and the use of momentum allows the torque to be increased even further. In contrast, excessive use of momentum results in lower demands on the target muscles, while an excessive increase of the load reduces the total hypertrophy stimulus by virtue of the decreased number of repetitions which can be performed successfully and thus the dramatically shortened time under tension. Our results disprove the conventional belief that the use of external momentum necessarily reduces the overload of the target muscles. A moderate use of external momentum increases both the per-repetition peak torque and the total hypertrophy stimulus in a set.

MeSH terms

  • Computer Simulation
  • Humans
  • Models, Biological*
  • Muscle Contraction / physiology*
  • Muscle Strength / physiology*
  • Muscle, Skeletal / physiology*
  • Physical Exertion / physiology*
  • Physical Stimulation / methods*
  • Resistance Training / methods*
  • Torque