Atl1 regulates choice between global genome and transcription-coupled repair of O(6)-alkylguanines

Mol Cell. 2012 Jul 13;47(1):50-60. doi: 10.1016/j.molcel.2012.04.028. Epub 2012 May 31.

Abstract

Nucleotide excision repair (NER) has long been known to remove DNA lesions induced by chemical carcinogens, and the molecular mechanism has been partially elucidated. Here we demonstrate that in Schizosaccharomyces pombe a DNA recognition protein, alkyltransferase-like 1 (Atl1), can play a pivotal role in selecting a specific NER pathway, depending on the nature of the DNA modification. The relative ease of dissociation of Atl1 from DNA containing small O(6)-alkylguanines allows accurate completion of global genome repair (GGR), whereas strong Atl1 binding to bulky O(6)-alkylguanines blocks GGR, stalls the transcription machinery, and diverts the damage to transcription-coupled repair. Our findings redraw the initial stages of the NER process in those organisms that express an alkyltransferase-like gene and raise the question of whether or not O(6)-alkylguanine lesions that are poor substrates for the alkyltransferase proteins in higher eukaryotes might, by analogy, signal such lesions for repair by NER.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alkyl and Aryl Transferases / chemistry
  • Alkyl and Aryl Transferases / genetics
  • Alkyl and Aryl Transferases / metabolism*
  • Blotting, Western
  • Crystallography, X-Ray
  • DNA Damage
  • DNA Repair*
  • DNA, Fungal / chemistry
  • DNA, Fungal / genetics
  • DNA, Fungal / metabolism
  • Flow Cytometry
  • G1 Phase / drug effects
  • Genome, Fungal / genetics
  • Guanine / analogs & derivatives*
  • Guanine / chemistry
  • Guanine / metabolism
  • Methylnitronitrosoguanidine / toxicity
  • Models, Molecular
  • Mutation
  • Nitrosourea Compounds / toxicity
  • Nucleic Acid Conformation
  • Protein Binding
  • Protein Structure, Tertiary
  • Schizosaccharomyces / drug effects
  • Schizosaccharomyces / genetics
  • Schizosaccharomyces / metabolism
  • Schizosaccharomyces pombe Proteins / chemistry
  • Schizosaccharomyces pombe Proteins / genetics
  • Schizosaccharomyces pombe Proteins / metabolism*
  • Transcription, Genetic / genetics

Substances

  • DNA, Fungal
  • Nitrosourea Compounds
  • Schizosaccharomyces pombe Proteins
  • Methylnitronitrosoguanidine
  • Guanine
  • N-benzylnitrosourea
  • O-(6)-methylguanine
  • ATL1 protein, S pombe
  • Alkyl and Aryl Transferases

Associated data

  • PDB/4ENJ
  • PDB/4ENK
  • PDB/4ENM
  • PDB/4ENN