Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May 18;7:28.
doi: 10.1186/s13326-016-0074-0. eCollection 2016.

The Cellular Microscopy Phenotype Ontology

Free PMC article

The Cellular Microscopy Phenotype Ontology

Simon Jupp et al. J Biomed Semantics. .
Free PMC article


Background: Phenotypic data derived from high content screening is currently annotated using free-text, thus preventing the integration of independent datasets, including those generated in different biological domains, such as cell lines, mouse and human tissues.

Description: We present the Cellular Microscopy Phenotype Ontology (CMPO), a species neutral ontology for describing phenotypic observations relating to the whole cell, cellular components, cellular processes and cell populations. CMPO is compatible with related ontology efforts, allowing for future cross-species integration of phenotypic data. CMPO was developed following a curator-driven approach where phenotype data were annotated by expert biologists following the Entity-Quality (EQ) pattern. These EQs were subsequently transformed into new CMPO terms following an established post composition process.

Conclusion: CMPO is currently being utilized to annotate phenotypes associated with high content screening datasets stored in several image repositories including the Image Data Repository (IDR), MitoSys project database and the Cellular Phenotype Database to facilitate data browsing and discoverability.

Keywords: Cellular phenotype; Imaging; OWL; Ontology.


Fig. 1
Fig. 1
Visualisation of the top-level terms in the CMPO phenotype ontology showing cell process, single cell, cellular component and molecular component phenotypes
Fig. 2
Fig. 2
Screenshot of the Image Data Repository showing image meta-data that include phenotype annotation to CMPO term “decreased duration of mitotic prophase” [CMPO:0000329]

Similar articles

  • Practical application of ontologies to annotate and analyse large scale raw mouse phenotype data.
    Beck T, Morgan H, Blake A, Wells S, Hancock JM, Mallon AM. Beck T, et al. BMC Bioinformatics. 2009 May 6;10 Suppl 5(Suppl 5):S2. doi: 10.1186/1471-2105-10-S5-S2. BMC Bioinformatics. 2009. PMID: 19426459 Free PMC article.
  • Modifier Ontologies for frequency, certainty, degree, and coverage phenotype modifier.
    Endara L, Thessen AE, Cole HA, Walls R, Gkoutos G, Cao Y, Chong SS, Cui H. Endara L, et al. Biodivers Data J. 2018 Nov 28;(6):e29232. doi: 10.3897/BDJ.6.e29232. eCollection 2018. Biodivers Data J. 2018. PMID: 30532623 Free PMC article.
  • Evolutionary characters, phenotypes and ontologies: curating data from the systematic biology literature.
    Dahdul WM, Balhoff JP, Engeman J, Grande T, Hilton EJ, Kothari C, Lapp H, Lundberg JG, Midford PE, Vision TJ, Westerfield M, Mabee PM. Dahdul WM, et al. PLoS One. 2010 May 20;5(5):e10708. doi: 10.1371/journal.pone.0010708. PLoS One. 2010. PMID: 20505755 Free PMC article.
  • The Human Phenotype Ontology in 2017.
    Köhler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Aymé S, Baynam G, Bello SM, Boerkoel CF, Boycott KM, Brudno M, Buske OJ, Chinnery PF, Cipriani V, Connell LE, Dawkins HJ, DeMare LE, Devereau AD, de Vries BB, Firth HV, Freson K, Greene D, Hamosh A, Helbig I, Hum C, Jähn JA, James R, Krause R, F Laulederkind SJ, Lochmüller H, Lyon GJ, Ogishima S, Olry A, Ouwehand WH, Pontikos N, Rath A, Schaefer F, Scott RH, Segal M, Sergouniotis PI, Sever R, Smith CL, Straub V, Thompson R, Turner C, Turro E, Veltman MW, Vulliamy T, Yu J, von Ziegenweidt J, Zankl A, Züchner S, Zemojtel T, Jacobsen JO, Groza T, Smedley D, Mungall CJ, Haendel M, Robinson PN. Köhler S, et al. Nucleic Acids Res. 2017 Jan 4;45(D1):D865-D876. doi: 10.1093/nar/gkw1039. Epub 2016 Nov 28. Nucleic Acids Res. 2017. PMID: 27899602 Free PMC article. Review.
  • Best behaviour? Ontologies and the formal description of animal behaviour.
    Gkoutos GV, Hoehndorf R, Tsaprouni L, Schofield PN. Gkoutos GV, et al. Mamm Genome. 2015 Oct;26(9-10):540-7. doi: 10.1007/s00335-015-9590-y. Epub 2015 Jul 28. Mamm Genome. 2015. PMID: 26215546 Review.
See all similar articles

Cited by 8 articles

  • Ontology-based prediction of cancer driver genes.
    Althubaiti S, Karwath A, Dallol A, Noor A, Alkhayyat SS, Alwassia R, Mineta K, Gojobori T, Beggs AD, Schofield PN, Gkoutos GV, Hoehndorf R. Althubaiti S, et al. Sci Rep. 2019 Nov 22;9(1):17405. doi: 10.1038/s41598-019-53454-1. Sci Rep. 2019. PMID: 31757986 Free PMC article.
  • Sharing and reusing cell image data.
    Zaritsky A. Zaritsky A. Mol Biol Cell. 2018 Jun 1;29(11):1274-1280. doi: 10.1091/mbc.E17-10-0606. Mol Biol Cell. 2018. PMID: 29851565 Free PMC article.
  • MIRO: guidelines for minimum information for the reporting of an ontology.
    Matentzoglu N, Malone J, Mungall C, Stevens R. Matentzoglu N, et al. J Biomed Semantics. 2018 Jan 18;9(1):6. doi: 10.1186/s13326-017-0172-7. J Biomed Semantics. 2018. PMID: 29347969 Free PMC article. Review.
  • Data-analysis strategies for image-based cell profiling.
    Caicedo JC, Cooper S, Heigwer F, Warchal S, Qiu P, Molnar C, Vasilevich AS, Barry JD, Bansal HS, Kraus O, Wawer M, Paavolainen L, Herrmann MD, Rohban M, Hung J, Hennig H, Concannon J, Smith I, Clemons PA, Singh S, Rees P, Horvath P, Linington RG, Carpenter AE. Caicedo JC, et al. Nat Methods. 2017 Aug 31;14(9):849-863. doi: 10.1038/nmeth.4397. Nat Methods. 2017. PMID: 28858338 Free PMC article.
  • The Image Data Resource: A Bioimage Data Integration and Publication Platform.
    Williams E, Moore J, Li SW, Rustici G, Tarkowska A, Chessel A, Leo S, Antal B, Ferguson RK, Sarkans U, Brazma A, Salas REC, Swedlow JR. Williams E, et al. Version 2. Nat Methods. 2017 Aug;14(8):775-781. doi: 10.1038/nmeth.4326. Epub 2017 Jun 19. Nat Methods. 2017. PMID: 28775673 Free PMC article.
See all "Cited by" articles


    1. Lock JG, Stromblad S. Systems microscopy: an emerging strategy for the life sciences. Exp Cell Res. 2010;316(8):1438–44. doi: 10.1016/j.yexcr.2010.04.001. - DOI - PubMed
    1. Washington NL, Haendel MA, Mungall CJ, Ashburner M, Westerfield M, Lewis SE. Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol. 2009;7(11):e1000247. doi: 10.1371/journal.pbio.1000247. - DOI - PMC - PubMed
    1. Smith CL, Goldsmith CA, Eppig JT. The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol. 2005;6(1):R7. doi: 10.1186/gb-2004-6-1-r7. - DOI - PMC - PubMed
    1. Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS, et al. Saccharomyces Genome Database provides mutant phenotype data. Nucleic Acids Res. 2010;38(Database issue):D433–6. doi: 10.1093/nar/gkp917. - DOI - PMC - PubMed
    1. Harris MA, Lock A, Bahler J, Oliver SG, Wood V. FYPO: the fission yeast phenotype ontology. Bioinformatics. 2013;29(13):1671–8. doi: 10.1093/bioinformatics/btt266. - DOI - PMC - PubMed

LinkOut - more resources