The STRING Database in 2017: Quality-Controlled Protein-Protein Association Networks, Made Broadly Accessible

Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368. doi: 10.1093/nar/gkw937. Epub 2016 Oct 18.

Abstract

A system-wide understanding of cellular function requires knowledge of all functional interactions between the expressed proteins. The STRING database aims to collect and integrate this information, by consolidating known and predicted protein-protein association data for a large number of organisms. The associations in STRING include direct (physical) interactions, as well as indirect (functional) interactions, as long as both are specific and biologically meaningful. Apart from collecting and reassessing available experimental data on protein-protein interactions, and importing known pathways and protein complexes from curated databases, interaction predictions are derived from the following sources: (i) systematic co-expression analysis, (ii) detection of shared selective signals across genomes, (iii) automated text-mining of the scientific literature and (iv) computational transfer of interaction knowledge between organisms based on gene orthology. In the latest version 10.5 of STRING, the biggest changes are concerned with data dissemination: the web frontend has been completely redesigned to reduce dependency on outdated browser technologies, and the database can now also be queried from inside the popular Cytoscape software framework. Further improvements include automated background analysis of user inputs for functional enrichments, and streamlined download options. The STRING resource is available online, at http://string-db.org/.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computational Biology / methods*
  • Databases, Protein*
  • Models, Molecular
  • Protein Binding
  • Protein Conformation
  • Protein Interaction Mapping
  • Protein Interaction Maps
  • Proteins / chemistry
  • Proteins / metabolism
  • Software*
  • Structure-Activity Relationship
  • User-Computer Interface
  • Web Browser

Substances

  • Proteins