There is a critical need for soft materials in the field of regenerative medicine and tissue engineering. However, designing injectable hydrogel scaffolds encompassing both adequate mechanical and biological properties remains a key challenge for in vivo applications. Here we use a bottom-up approach for synthesizing supramolecular gels to generate novel biomaterial candidates. We evaluated the low molecular weight gels candidates in vivo and identified one urea-containing molecule, compound 16, that avoid foreign body reactions in mice. The self-assembly of bolaamphiphiles creates a unique hydrogel supramolecular structures featuring fast gelation kinetics, high elastic moduli, thixotropic, and thermal reversibility properties. This soft material, which inhibits recognition by macrophages and fibrous deposition, exhibits long-term stability after in vivo injection.
Keywords: Biomaterials; Bolaamphiphiles; Low molecular weight hydrogelator; Rheology; Subcutaneous implantation; Supramolecular structures.
Copyright © 2017 Elsevier Ltd. All rights reserved.