Mechanisms of error discrimination by Escherichia coli DNA polymerase I

Biochemistry. 1988 Jan 26;27(2):546-53. doi: 10.1021/bi00402a007.


The mechanism of base selection by DNA polymerase I of Escherichia coli has been investigated by kinetic analysis. The apparent KM for the insertion of the complementary nucleotide dATP into the hook polymer poly(dT)-oligo(dA) was found to be 6-fold lower than that for the noncomplementary nucleotide dGTP, whereas the Vmax for insertion of dATP was 1600-fold higher than that for dGTP. The ratio of Kcat/KM values for complementary and mismatched nucleotides of 10(4) demonstrates the extremely high specificity of base selection by DNA polymerase I and is in agreement with results obtained with a different template-primer, poly(dC)-oligo(dG) [El-Deiry, W. S., Downey, K. M., & So, A. G. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 7378]. Studies on the effects of phosphate ion on the polymerase and 3'- to 5'-exonuclease activities of DNA polymerase I showed that, whereas the polymerase activity was somewhat stimulated by phosphate, the exonuclease activity was markedly inhibited, being 50% inhibited at 25 mM phosphate and greater than 90% inhibited at 80 mM phosphate. Selective inhibition of the exonuclease activity by phosphate also resulted in inhibition of template-dependent conversion of a noncomplementary dNTP to dNMP and, consequently, markedly affected the kinetic constants for insertion of noncomplementary nucleotides. The mutagenic metal ion Mn2+ was found to affect error discrimination by both the polymerase and 3'- and 5'-exonuclease activities of DNA polymerase I.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • DNA Polymerase I / metabolism*
  • Escherichia coli / enzymology*
  • Kinetics
  • Magnesium / pharmacology
  • Manganese / pharmacology
  • Osmolar Concentration
  • Substrate Specificity
  • Templates, Genetic


  • Manganese
  • DNA Polymerase I
  • Magnesium