Resveratrol-mediated ADAM9 degradation decreases cancer progression and provides synergistic effects in combination with chemotherapy

Am J Cancer Res. 2020 Nov 1;10(11):3828-3837. eCollection 2020.

Abstract

Metastasis is a crucial hallmark of cancer progression and remains the primary cause of patient deaths. Metastasis-associated proteases contribute to cancer progression by disrupting the extracellular matrix interaction to facilitate the spreading of cancer cells to other organs. ADAM9, a type of metalloprotease, has been reported to promote tumor biology and is associated with clinicopathological features such as poor outcome, therapy resistance, and metastasis formation. Targeting ADAM9 might serve as a putative therapeutic application; however, this option is currently unavailable. Resveratrol, a polyphenol from plants, has been shown to be promising for cancer treatment due to its wide variety of biological effects with few side effects. In this study, we demonstrated that resveratrol inhibits cancer cell migration and viability in lung and esophageal cancer cells through the regulation of ADAM9. Mechanistically, resveratrol inhibits ADAM9 protein expression in cancer cells through the ubiquitin-proteasome pathway. Moreover, resveratrol provides synergistic anticancer effects when combined with clinical chemotherapeutics. Our data suggests that resveratrol may inhibit human lung cancer and ESCC progression by inhibiting ADAM9 expression, thus providing a potential mechanism for the anticancer action of resveratrol.

Keywords: ADAM9; Resveratrol; metastasis.