N,N-Dialkylated monophenolic derivatives of trans-2-phenylcyclopropylamine were synthesized and tested for central 5-hydroxytryptamine (5-HT) and dopamine (DA) receptor stimulating activity by use of a biochemical test method in rats. A hydroxy substituent in the 2- or 3-position of the phenyl ring was required for 5-HT-receptor stimulation. N,N-Diethyl or N,N-di-n-propyl substitution gave the most potent 5-HT-receptor agonists. The 4-hydroxy and 3,4-dihydroxy derivatives of trans-2-phenyl-N,N-di-n-propylcyclopropylamine were inactive at central DA and 5-HT receptors. In contrast, the corresponding 3-hydroxy derivative 18 and some of its derivatives weakly affected both DA and NE synthesis. Two of the most potent 5-HT-receptor agonists, trans-2-(2-hydroxyphenyl)-N,N-di-n-propylcyclopropylamine (8) and the 3-hydroxy isomer 18 were resolved into the enantiomers. The 1R,2S enantiomers of 8 and 18 displayed 5-HT activity, while the 1S,2R enantiomers were inactive. Compound (1R,2S)-18, but not (1R,2S)-8, weakly affected rat brain DA and NE synthesis.