Psoriasis, one of the most common skin diseases affecting roughly 2%-3% of the world population, is associated with a reduced skin barrier function (SBF) that might play an important role in its pathophysiology. The SBF is provided primarily by the stratum corneum (SC) of the skin. Previous studies have revealed a higher trans-epidermal water loss, lower hydration, abnormal concentration and composition of intercellular lipids, as well as alterations in secondary keratin structure in the psoriatic SC. We compared on molecular level lesional psoriatic skin (LPS) with non-lesional psoriatic skin (nLPS) from 19 patients non-invasively in vivo, using confocal Raman micro-spectroscopy. By analysing the corresponding Raman spectra, we determined SBF-defining parameters of the SC depth-dependently. Our results revealed a lower total lipid concentration, a shift of lamellar lipid organisation towards more gauche-conformers and an increase of the less dense hexagonal lateral packing of the intercellular lipids in LPS. Furthermore, we observed lower natural moisturising factor concentration, lower total water as well as a strong tendency towards less strongly bound and more weakly bound water molecules in LPS. Finally, we detected a less stable secondary keratin structure with increased β-sheets, in contrast to the tertiary structure, showing a higher degree of folded keratin in LPS. These findings clearly suggest structural differences indicating a reduced SBF in LPS, and are discussed in juxtaposition to preceding outcomes for psoriatic and healthy skin. Understanding the alterations of the psoriatic SC provides insights into the exact pathophysiology of psoriasis and paves the way for optimal future treatments.
Keywords: carotenoids; keratin; lipid organisation; psoriasis; water binding.
© 2023 The Authors. Experimental Dermatology published by John Wiley & Sons Ltd.