The effect of 6-aminonicotinamide (6AN) treatment on the activities of alternative pathways of glucose metabolism in 20-day-old rat brain was evaluated by measurements of yields of 14CO2 from glucose labeled with 14C on carbons 1, 2, 3 + 4, or 6 and uniformly labeled glucose, and from the incorporation of 14C from specifically labeled glucose into lipids by brain slices from cerebral hemispheres and cerebellum. At the highest dose of 6AN used (35 mg/kg body weight) there was a significant decrease in the 14CO2 yields via the pentose phosphate pathway, the glycolytic route, tricarboxylic acid (TCA) cycle, and via the glutamate-gamma-aminobutyric acid pathway. Giving a graded series of doses (20-35 mg 6AN/kg body weight) revealed a hierarchy of responses in which the pentose phosphate pathway, lactate, glyceride-glycerol, and fatty acid formation were most sensitive, followed, in sequence, by the pyruvate dehydrogenase reaction, the glutamate-gamma-aminobutyrate route and, finally, the TCA cycle. The nature of the blocks in the various pathways was examined by the use of metabolite profiles.