Role reversal for substrates and inhibitors. Slow inactivation of D-amino acid transaminase by its normal substrates and protection by inhibitors

J Biol Chem. 1993 Aug 25;268(24):17687-94.

Abstract

D-Amino acid transaminase, which catalyzes the synthesis of D-alanine and D-glutamate for the bacterial cell wall, is a candidate for the design of specific inhibitors that could be novel antimicrobial agents. Under the experimental conditions usually employed for enzyme assays, kinetic parameters for its substrates were determined for short incubation periods, when intermediates and products do not accumulate and the enzyme activity is linear with time. Such kinetic analyses indicate that the enzyme accepts most D-amino acids but D-aspartate and D-glutamate are the best substrates. Under a different type of experimental conditions when the enzyme is exposed to D-alanine, intermediates, and products for periods of hours, it slowly becomes inactivated (Martinez del Pozo, A., Yoshimura, T., Bhatia, M. B., Futaki, S., and Manning, J. M. (1992) Biochemistry 31, 6018-6023). We now report that D-aspartate, D-glutamate, and L-alanine also lead to slow inactivation. Methylation or amidation of the alpha-COOH group of D-alanine prevents inactivation, indicating that decarboxylation is required for inactivation; the slow release of CO2 from substrate is demonstrated. The alpha-methyl analog of D-alanine, D-aspartate, and D-glutamate do not lead to inactivation, showing that the alpha-hydrogen of the substrate is required, i.e. that some processing is required. Lys145, which binds pyridoxal 5'-phosphate in the wild-type enzyme, is not involved in the inactivation since two active site mutant enzymes, K145Q and K145N, are also inactivated. Reactivation of the inactive enzyme at acidic pH is accompanied by the release of ammonia corresponding to 1 mol/mol of dimeric enzyme. Competitive inhibitors, amine-containing buffers, and thiols effectively impede the inactivation. This reversal in the roles of substrates and inhibitors, i.e. when a substrate can be an inactivator and an inhibitor can act as a protector, occurs during a time period not usually used to measure steady-state kinetics or initial velocities of enzyme reactions and could have physiological relevance in cells.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acids / metabolism*
  • Amino Acids / pharmacology*
  • Animals
  • D-Alanine Transaminase
  • Kinetics
  • Mutagenesis, Site-Directed
  • Recombinant Proteins / antagonists & inhibitors
  • Recombinant Proteins / metabolism
  • Substrate Specificity
  • Transaminases / antagonists & inhibitors*
  • Transaminases / metabolism*

Substances

  • Amino Acids
  • Recombinant Proteins
  • Transaminases
  • D-Alanine Transaminase