Relatedness of three species of "false neisseriae," Neisseria caviae, Neisseria cuniculi, and Neisseria ovis, by DNA-DNA hybridizations and fatty acid analysis

Int J Syst Bacteriol. 1993 Apr;43(2):210-20. doi: 10.1099/00207713-43-2-210.

Abstract

DNA-DNA hybridization was used to determine the levels of genomic relatedness of the three species of "false neisseriae," Neisseria caviae, Neisseria cuniculi, and Neisseria ovis. The reference strains of these species exhibited high levels of intraspecies relatedness (93 to 100% for N. caviae, 79 to 100% for N. cuniculi, and 68 to 100% for N. ovis) but low levels of interspecific relatedness (less than 34%) to each other and to various species belonging to the beta subclass of the Proteobacteria (Kingella kingae, Neisseria gonorrhoeae, Neisseria meningitidis, and Oligella urethralis) or to the gamma subclass (Branhamella catarrhalis, Kingella indologenes, Moraxella atlantae, Moraxella bovis, Moraxella lacunata subsp. lacunata, Moraxella lacunata subsp. liquefaciens, Moraxella nonliquefaciens, Moraxella osloensis, and Moraxella phenylpyruvica). However, the levels of DNA-DNA hybridization for the three species of "false neisseriae" were significantly higher with the species belonging to the gamma subclass (average, 13.7%) than with the species belonging to the beta subclass (average, 4.5%). These data suggest that N. caviae, N. cuniculi, and N. ovis are three separate genomic species in the gamma subclass. An ascendant hierarchical classification based only on fatty acid profiles distinguished four main classes containing (i) most of the "classical moraxellae," the "false neisseriae," and B. catarrhalis, (ii) only Acinetobacter spp., (iii) M. nonliquefaciens and "misnamed moraxellae" (M. atlantae, M. osloensis, and M. phenylpyruvica), and (iv) the "true neisseriae," the three Kingella species, and O. urethralis. Fatty acids that distinguish these four classes were identified. The fatty acid profiles of the two strains of Psychrobacter immobilis which we studied are not very similar to the profiles of the other taxa. Our results support the hypothesis that the three species of "false neisseriae," B. catarrhalis, the "classical moraxellae," and Acinetobacter spp. should be included in the same family.

Publication types

  • Comparative Study

MeSH terms

  • Bacterial Typing Techniques
  • DNA, Bacterial / genetics
  • Fatty Acids / analysis
  • Humans
  • Neisseria / classification*
  • Nose / microbiology
  • Nucleic Acid Hybridization
  • Phenotype
  • Sputum / microbiology
  • Terminology as Topic

Substances

  • DNA, Bacterial
  • Fatty Acids