The rodent liver displays marked age- and sex-dependent changes in androgen sensitivity due to the sexually dimorphic and temporally programmed expression of the androgen receptor (AR) gene. We have altered this normal phenotype by constitutive overexpression of the rat AR transgene in the mouse liver by targeting it via the human phenylalanine hydroxylase (hPAH) gene promoter. These transgenic animals in their heterozygous state produce an approximately 30-fold higher level of the AR in the liver as compared with the nontransgenic control. Androgen inactivation via sulfonation of the hormone by dehydroepiandrosterone sulfotransferase (DST), an androgen-repressible enzyme, also contributes to the age- and sex-dependent regulation of hepatic androgen sensitivity. DST has a broad range of substrate specificity and is responsible for the age- and sex-specific activation of certain polycyclic aromatic hepatocarcinogens as well, by converting them to electrophilic sulfonated derivatives. In the transgenic female, the hepatic expression of DST was approximately 4-fold lower than in normal females, a level comparable to that in normal males. The hPAH-AR mice will serve as a valuable model for studying the sex- and age-invariant expression of liver-specific genes, particularly those involved in the activation of environmental hepatocarcinogens such as the aromatic hydrocarbons.