Tiger salamanders have been used in visual science because of the large size of their cells and the ease of preparation and maintenance of in vitro retinal preparations. We have found that salamanders over 27 cm in length show a variety of visual abnormalities. Compared to smaller animals (15-23 cm), large animals exhibited a decrease in visual responses determined by tests of the optomotor reflex. Small animals responded correctly an average of 84.5% of the time in visual testing at three light levels compared to an average of 68.4% for the large animals with the poorest visual performance at the lowest level of illumination. In addition, large animals contained (i) histological degeneration of the outer retina, in particular, loss and disruption of outer segments and abnormalities of the retinal pigmented epithelium, (ii) loss of cells, including photoreceptors, by apoptosis as evaluated with the TUNEL technique, and (iii) an increase in the number of macrophages and lymphocytes within the retina as determined by morphological examination. These histological changes were present in all large animals and all quadrants of their retinas. In contrast, small animals showed virtually no retinal degeneration, no TUNEL-positive cells, and few immune-like cells in the retina. Since large animals are also older animals. the visual changes are age-related. Loss of visual function and histological degeneration in the outer retina also typify aged human eyes. Thus, we propose that large salamanders serve as an animal model for age-related retinal degeneration. In addition to providing a source of aging retina that is readily accessible to experimental manipulation, the salamander provides a pigmented retina with a mixed (2:1, rod:cone) population of photoreceptors, similar to the degeneration-prone parafoveal region of the human eye.