To evaluate the role of natural immunoglobulin (Ig)M in the immediate response against microbial infection, we tested mutant mice that are deficient in secreted (s)IgM in an acute peritonitis model induced by cecal ligation and puncture (CLP). 20% of wild-type mice died within 32 h of CLP, whereas 70% of sIgM-deficient mice died within the same time period. The increased susceptibility was associated with a reduced level of tumor necrosis factor (TNF)-alpha, a decreased neutrophil recruitment and an increased bacterial load in the peritoneum, and elevated levels of endotoxin and proinflammatory cytokines in the circulation. Resistance to CLP by sIgM-deficient mice was restored by reconstitution with polyclonal IgM from normal mouse serum. Reconstitution with a monoclonal IgM specific to phosphatidylcholine, a conserved cell membrane component, has a modest effect but a monoclonal IgM specific to phosphocholine is not protective. These findings demonstrate a critical role of natural IgM in the immediate defense against severe bacterial infection.