Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Results by year

Table representation of search results timeline featuring number of search results per year.

Year Number of Results
2021 3
2022 2
2023 6
2024 2

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

11 results

Results by year

Filters applied: . Clear all
Page 1
Deep Learning Diagnosis and Classification of Rotator Cuff Tears on Shoulder MRI.
Lin DJ, Schwier M, Geiger B, Raithel E, von Busch H, Fritz J, Kline M, Brooks M, Dunham K, Shukla M, Alaia EF, Samim M, Joshi V, Walter WR, Ellermann JM, Ilaslan H, Rubin D, Winalski CS, Recht MP. Lin DJ, et al. Among authors: von busch h. Invest Radiol. 2023 Jun 1;58(6):405-412. doi: 10.1097/RLI.0000000000000951. Epub 2023 Jan 18. Invest Radiol. 2023. PMID: 36728041
Automated detection of critical findings in multi-parametric brain MRI using a system of 3D neural networks.
Nael K, Gibson E, Yang C, Ceccaldi P, Yoo Y, Das J, Doshi A, Georgescu B, Janardhanan N, Odry B, Nadar M, Bush M, Re TJ, Huwer S, Josan S, von Busch H, Meyer H, Mendelson D, Drayer BP, Comaniciu D, Fayad ZA. Nael K, et al. Among authors: von busch h. Sci Rep. 2021 Mar 25;11(1):6876. doi: 10.1038/s41598-021-86022-7. Sci Rep. 2021. PMID: 33767226 Free PMC article.
Automated deep-learning system in the assessment of MRI-visible prostate cancer: comparison of advanced zoomed diffusion-weighted imaging and conventional technique.
Hu L, Fu C, Song X, Grimm R, von Busch H, Benkert T, Kamen A, Lou B, Huisman H, Tong A, Penzkofer T, Choi MH, Shabunin I, Winkel D, Xing P, Szolar D, Coakley F, Shea S, Szurowska E, Guo JY, Li L, Li YH, Zhao JG. Hu L, et al. Among authors: von busch h. Cancer Imaging. 2023 Jan 17;23(1):6. doi: 10.1186/s40644-023-00527-0. Cancer Imaging. 2023. PMID: 36647150 Free PMC article.
A concurrent, deep learning-based computer-aided detection system for prostate multiparametric MRI: a performance study involving experienced and less-experienced radiologists.
Labus S, Altmann MM, Huisman H, Tong A, Penzkofer T, Choi MH, Shabunin I, Winkel DJ, Xing P, Szolar DH, Shea SM, Grimm R, von Busch H, Kamen A, Herold T, Baumann C. Labus S, et al. Among authors: von busch h. Eur Radiol. 2023 Jan;33(1):64-76. doi: 10.1007/s00330-022-08978-y. Epub 2022 Jul 28. Eur Radiol. 2023. PMID: 35900376
A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate: Results of a Multireader, Multicase Study.
Winkel DJ, Tong A, Lou B, Kamen A, Comaniciu D, Disselhorst JA, Rodríguez-Ruiz A, Huisman H, Szolar D, Shabunin I, Choi MH, Xing P, Penzkofer T, Grimm R, von Busch H, Boll DT. Winkel DJ, et al. Among authors: von busch h. Invest Radiol. 2021 Oct 1;56(10):605-613. doi: 10.1097/RLI.0000000000000780. Invest Radiol. 2021. PMID: 33787537
Detection and PI-RADS classification of focal lesions in prostate MRI: Performance comparison between a deep learning-based algorithm (DLA) and radiologists with various levels of experience.
Youn SY, Choi MH, Kim DH, Lee YJ, Huisman H, Johnson E, Penzkofer T, Shabunin I, Winkel DJ, Xing P, Szolar D, Grimm R, von Busch H, Son Y, Lou B, Kamen A. Youn SY, et al. Among authors: von busch h. Eur J Radiol. 2021 Sep;142:109894. doi: 10.1016/j.ejrad.2021.109894. Epub 2021 Aug 5. Eur J Radiol. 2021. PMID: 34388625
11 results